Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems
نویسندگان
چکیده
BACKGROUND Biocatalytic asymmetric reductions with whole cells can offer high enantioselectivity, environmentally benign processes and energy-effective operations and thus are of great interest. The application of whole cell-mediated bioreduction is often restricted if substrate and product have low water solubility and/or high toxicity to the biocatalyst. Many studies have shown that a biphasic system is often useful in this instance. Hence, we developed efficient biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs), to improve the biocatalytic anti-Prelog enantioselective reduction of acetyltrimethylsilane (ATMS) to (R)-1-trimethylsilylethanol {(R)-1-TMSE}, which is key synthon for a large number of silicon-containing drugs, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst. RESULTS It was found that the substrate ATMS and the product 1-TMSE exerted pronounced toxicity to immobilized Candida parapsilosis CCTCC M203011 cells. The biocompatible water-immiscible ILs can be applied as a substrate reservoir and in situ extractant for the product, thus greatly enhancing the efficiency of the biocatalytic process and the operational stability of the cells as compared to the IL-free aqueous system. Various ILs exerted significant but different effects on the bioreduction and the performances of biocatalysts were closely related to the kinds and combination of cation and anion of ILs. Among all the water-immiscible ILs investigated, the best results were observed in 1-butyl-3-methylimidazolium hexafluorophosphate (C(4)mim·PF(6))/buffer biphasic system. Furthermore, it was shown that the optimum substrate concentration, volume ratio of buffer to IL, buffer pH, reaction temperature and shaking rate for the bioreduction were 120 mM, 8/1 (v/v), 6.0, 30°C and 180 r/min, respectively. Under these optimized conditions, the initial reaction rate, the maximum yield and the product e.e. were 8.1 μmol/min g(cwm), 98.6% and >99%, respectively. The efficient whole-cell biocatalytic process was shown to be feasible on a 450-mL scale. Moreover, the immobilized cells remained around 87% of their initial activity even after being used repeatedly for 8 batches in the C(4)mim·PF(6)/buffer biphasic system, exhibiting excellent operational stability. CONCLUSIONS For the first time, we have successfully utilized immobilized Candida parapsilosis CCTCC M203011 cells, for efficiently catalyzing anti-Prelog enantioselective reduction of ATMS to enantiopure (R)-1-TMSE in the C(4)mim·PF(6)/buffer biphasic system. The substantially improved biocatalytic process appears to be effective and competitive on a preparative scale.
منابع مشابه
Using a water-immiscible ionic liquid to improve asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one catalyzed by immobilized Candida parapsilosis CCTCC M203011 cells
BACKGROUND Whole cells are usually employed for biocatalytic reduction reactions to ensure efficient coenzyme regeneration and to avoid problems with enzyme purification and stability. The efficiency of whole cell-catalyzed bioreduction is frequently restricted by pronounced toxicity of substrate and/or product to the microbial cells and in many instances the use of two-phase reaction systems c...
متن کاملPurification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-prelog stereospecificity from Candida parapsilosis.
An alcohol dehydrogenase from Candida parapsilosis CCTCC M203011 was characterized along with its biochemical activity and structural gene. The amino acid sequence shows similarity to those of the short-chain dehydrogenase/reductases but no overall identity to known proteins. This enzyme with unusual stereospecificity catalyzes an anti-Prelog reduction of 2-hydroxyacetophenone to (S)-1-phenyl-1...
متن کاملCarbonyl reductase SCRII from Candida parapsilosis catalyzes anti-Prelog reaction to (S)-1-phenyl-1,2-ethanediol with absolute stereochemical selectivity.
An (S)-specific carbonyl reductase (SCRII) was purified to homogeneity from Candida parapsilosis by following an anti-Prelog reducing activity of 2-hydroxyacetophenone. Peptide mass fingerprinting analysis shows SCRII belongs to short-chain dehydrogenase/reductase family. Its coding gene was cloned and overexpressed in Escherichia coli. The recombinant SCRII displays the similar enzymatic chara...
متن کاملEfficient Asymmetric Reduction of 4-(Trimethylsilyl)-3-Butyn-2-One by Candida parapsilosis Cells in an Ionic Liquid-Containing System
Hydrophilic ionic liquids (ILs) were employed as green solvents to construct an IL-containing co-solvent system for improving the asymmetric reduction of 4-(trimethylsilyl)-3-butyn-2-one by immobilized Candida parapsilosis cells. Among 14 hydrophilic ILs examined, 1-(2'-hydroxyl)ethyl-3-methylimidazolium nitrate (C(2)OHMIM·NO(3)) was considered as the most suitable IL for the bioreduction with ...
متن کاملMarkedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system
BACKGROUND Enantiopure (S)-1-(4-methoxyphenyl) ethanol {(S)-MOPE} can be employed as an important synthon for the synthesis of cycloalkyl [b] indoles with the treatment function for general allergic response. To date, the biocatalytic resolution of racemic MOPE through asymmetric oxidation in the biphasic system has remained largely unexplored. Additionally, deep eutectic solvents (DESs), as a ...
متن کامل